
yWorks UML Doclet 3.1 User's Guide

Contents

1. Introduction . p. 3
2. System Requirements . p. 4
3. Installing yDoc . p. 5
4. Running yDoc . p. 6

• Using the yDoc doclet . p. 6
• Using the yDoc doclet from within a Java IDE p. 7
• yDoc Quick Start . p. 8

5. yDoc Features . p. 10
• Generating UML class diagrams . p. 10
• General Layout of UML class diagrams . p. 11
• Using filters . p. 12
• Using the XML driven taglet factory . p. 12
• Custom command line options . p. 14

6. Configuring yDoc . p. 16
• resources/ydoc.cfg . p. 16
• UML Styles . p. 25

7. Limitations . p. 26
8. Acknowledgments . p. 27

• Apache Software License . p. 27
• GNU Lesser General Public License . p. 30

2 yWorks UML Doclet 3.1 User's Guide

yWorks UML Doclet 3.1 User's Guide 2

1. Introduction

Welcome to the yWorks UML Doclet User's Guide.
This guide explains how to use yWorks UML Doclet or yDoc for short, a javadoc
extension (more specifically a doclet/taglet bundle) that provides

• functionality to auto-generate, customize, and include UML diagrams in the API
documentation of your Java products

• a filter interface which allows for custom suppression of class, field, or method
documentation

• an easy to use mechanism for defining simple custom tags via XML

Although, yDoc is designed in such a way that it allows user's to continue using all
the features they know from standard javadoc, some basic knowledge about javadoc
usage in general and doclet usage specifically is required to successfully use yDoc.

Detailed information on javadoc is available at
https://docs.oracle.com/javase/8/docs/technotes/guides/javadoc/index.html.
Detailed information on doclets is available at
https://docs.oracle.com/javase/8/docs/technotes/guides/javadoc/doclet/overview.html.

3 yWorks UML Doclet 3.1 User's Guide

yWorks UML Doclet 3.1 User's Guide 3

https://docs.oracle.com/javase/8/docs/technotes/guides/javadoc/index.html
https://docs.oracle.com/javase/8/docs/technotes/guides/javadoc/doclet/overview.html

2. System Requirements

yDoc 3.1 requires JDK 1.8 installed on your system.
To view UML class diagrams in SVG or SVGZ format, you need a browser with
native SVG support. To view UML class diagrams in SWF format, you need a
browser with a Flash Player plug-in. Flash Player plug-ins are available from Adobe.
If you want to run yDoc under Unix/Linux operating systems, you need to have an X
server installed and running, since yDoc makes use of the java awt and/or swing
packages (for UML generation only).

4 yWorks UML Doclet 3.1 User's Guide

yWorks UML Doclet 3.1 User's Guide 4

http://www.adobe.com/

3. Installing yDoc

Unzip the yDoc archive (yworks-uml-doclet-3.1-jdk1.8.zip) into a directory of your
choice. It will create a lib/, a doc/, and a resources/ subdirectory.
The lib directory contains the java classes you need to run the ydoc expansion as jar
libraries.
The doc directory contains the yDoc User's Guide in HTML and PDF format, the
DocFilter and PathResolver API Documentation in HTML format, and several usage
samples.
The resources directory contains various configuration files which you can use to
customize the behaviour of the yDoc expansion. See Configuring yDoc and Using the
XML driven taglet factory for more details.

5 yWorks UML Doclet 3.1 User's Guide

yWorks UML Doclet 3.1 User's Guide 5

4. Running yDoc

Basically you run javadoc. The only difference is, that you tell javadoc to use the
facilities provided by yDoc as a plug-in.
Read on for detailed information on how to do that. You can skip this part, if you are
already familiar with using custom doclets for javadoc.

Using the yDoc doclet

We recommend running javadoc either using a build tool such as ANT (version 1.5.2
or better) or directly from commandline. Before running javadoc from commandline,
put your commandline options into a file called "options" and run javadoc by invoking

javadoc @options @packages
where "packages" is the filename of a file containing the java packages you want to
be documented.

See yDoc Quick Start for simple examples on how to use yDoc.

For detailed documentation on the javadoc options, see the javadoc tool homepage
at https://docs.oracle.com/javase/8/docs/technotes/guides/javadoc/index.html.

To use the yDoc expansion the following options are especially important:

• -docletpath docletpathlist
This option tells javadoc where to look for the yDoc expansion.
The docletpathlist must contain the path to the library ydoc.jar
<ydoc_install_dir>/lib/ydoc.jar

and the resources directory
<ydoc_install_dir>/resources

Important:
If you want to use the yDoc UML generation, docletpathlist must also contain the
path to your compiled, unobfuscated Java class files (*.class), for which you
want to generate the API documentation, and to all libraries needed to compile
your Java source files.

• -doclet ydoc.doclets.YStandard
The -doclet ydoc.doclets.YStandard option finally tells javadoc to actually use the
YStandard doclet, which is the core class of the ydoc expansion.

See yDoc Features for information on (custom) commandline options and on how to
use the specific capabilites of yDoc.

A sample options file on a Win32 operating system could look like this:

-d <destination directory>
-sourcepath <source directory>
-breakiterator
-generic
-umlautogen
-author
-docletpath <YID>/lib/ydoc.jar;<YID>/resources;<some path>/myapp.jar
-doclet ydoc.doclets.YStandard
-filterpath <YID>/lib/ydoc.jar
-filter ydoc.filters.ExcludeFilter
-tagletpath <YID>/lib/ydoc.jar
-tag param
-tag return

6 yWorks UML Doclet 3.1 User's Guide

yWorks UML Doclet 3.1 User's Guide 6

http://ant.apache.org/
https://docs.oracle.com/javase/8/docs/technotes/guides/javadoc/index.html

-tag see
-ytag y.uml

where <YID> denotes the <ydoc_install_dir>.
On Unix/Linux operating systems, you will have to use " : " as a path separator
instead of " ; ".

Using the yDoc doclet from within a Java IDE

Running yDoc from within Eclipse 3
1. Select Export from the File menu.

2. Choose Javadoc from Select an export destination.
Go to the next tab.

3. Select Use Custom Doclet then specify Doclet name and
Doclet class path.

Name has to be ydoc.doclets.YStandard and path has to be
<yid>/lib/ydoc.jar.
<yid> denotes the absolute path to the yDoc directory.

Go to the next tab.

4. Add in Extra Javadoc options
-docletpath <yid>/resources

If your sources depend on additional libraries, you also need
to append the path to these libraries to the above line.

Any other options you want to use, e.g. -d <destination>
or -umlautogen, need to be specified in this input area, too.

5. Optionally, add -J-Xmx1024m in VM options.
You may want to play with the numerical value depending on
available RAM and project size.

Running yDoc from within IntelliJ Idea 6
1. Select Generate JavaDoc ... from the Tools menu.

2. Add in Other command line arguments
-docletpath "<yid>/lib/ydoc.jar" -doclet
ydoc.doclets.YStandard -resourcepath
"<yid>/resources"
<yid> denotes the absolute path to the yDoc directory.

If your sources depend on additional libraries, you also need
to append the path to these libraries to the -docletpath
option.

Any other options you want to use, e.g. -d <destination>
or -umlautogen, need to be specified in this input field, too.

7 yWorks UML Doclet 3.1 User's Guide

yWorks UML Doclet 3.1 User's Guide 7

3. Click Start.

Running yDoc from within Netbeans 5.5
1. Switch to Projects view.

2. Open context menu for Source Packages (by right clicking).
Choose Properties.

3. Expand Build.
Choose Documenting.

4. Add in Additional Javadoc Options
-docletpath "<yid>/lib/ydoc.jar" -doclet
ydoc.doclets.YStandard -resourcepath
"<yid>/resources"
<yid> denotes the absolute path to the yDoc directory.

If your sources depend on additional libraries, you also need
to append the path to these libraries to the -docletpath
option.

Any other options you want to use, e.g. -d <destination>
or -umlautogen, need to be specified in this input field, too.

5. Choose Generate Javadoc for "<project name>" from the
Build menu.

yDoc Quick Start

This section demonstrates how to use yDoc to generate a Javadoc page of a sample
class that will automatically include an UML diagram depicting that class.

• yDoc from commandline
Look in <YID>/doc/examples for sample options files and sample Java
sources to test yDoc.
All you need to do is invoking javadoc in <ydoc_install_dir> with either

javadoc @doc/examples/options.sample.linux
or

javadoc @doc/examples/options.sample.win32
depending on your operating system.

• yDoc in ANT
Using ANT 1.5.2 or better, you can use ANT's javadoc task to run yDoc.

Look in <YID>/doc/examples for a sample ANT build file and sample Java
sources to test yDoc.
All you need to do is invoking ant in <ydoc_install_dir> with

ant -buildfile doc/examples/build-sample.xml test-ydoc

The generated API pages can now be found in

8 yWorks UML Doclet 3.1 User's Guide

yWorks UML Doclet 3.1 User's Guide 8

<ydoc_install_dir>/doc/api/examples.

Note that the generated UML diagrams are in PNG format. If you want to generate
the uml diagrams in a different format (SVG, SVGZ, SWF, GIF, JPG) simply change
the value of formats.fileformat in the yDoc configuration file
<ydoc_install_dir>/resources/ydoc.cfg accordingly.

The next tutorial step would be to look in <ydoc_install_dir>/doc/examples
for the sample option/build files and sample Java sources which have been used in
this example. Once you understand the options and tags, you are ready to use yDoc
in your own project.

9 yWorks UML Doclet 3.1 User's Guide

yWorks UML Doclet 3.1 User's Guide 9

5. yDoc Features

Generating UML class diagrams

yDoc will generate UML diagrams, if one or more of the following commandline
options are used:

• -umlgen
• -umltypegen
• -umlpackagegen
• -umloverviewgen
• -umlautogen

All UML diagrams feature hyperlinks for the displayed packages, types, and type
members, which allow direct access to the corresponding documentation.

See Custom command line options for additional details.

yDoc supports several output formats for UML diagrams, including SVG, SWF, and
PNG and will automatically integrate the diagrams into the generated HTML API
documentation.
Moreover, yDoc provides many settings which allow to customize the generated UML
diagrams in great detail.

See Configuring yDoc for details.

Important:
yDoc uses the Java Reflection API to generate the class diagrams, therefore you
need to specify the path to your compiled, unobfuscated Java class files (*.class) and
to all libraries needed to compile your Java source files in the -docletpath option.
Your class files may be located in a jar file.

Alternatively, yDoc can embed predefined diagrams instead of generating them.
Predefined diagrams have to be available in GraphML. GraphML is a generic graph
interchange file format. Diagrams in this format can, e.g., be created using yEd,
yWorks' free graph editor.

For yDoc to be able to find and read such diagrams, a diagram locator has to be
specified.

The distribution comes with one predefined diagram locator. For this default locator to
work successfully, predefined diagram files have to meet the following criteria:

• Overview diagrams must be in the same directory as your overview.html. The
diagram files have to be named overview <id> .graphml, where <id>
denotes the diagram ID (see also Configuring yDoc).

• Package diagrams must be in the same directory as your package.html. The
diagram files have to be named package <id> .graphml, where <id>
denotes the diagram ID (see also Configuring yDoc).

• Type diagrams must be in the same directory as the corresponding source file.
The diagram files have to follow the same naming convention as the Java source
file except for the .graphml file extension.

work successfully, predefined diagram files have to meet the following criteria:

10 yWorks UML Doclet 3.1 User's Guide

yWorks UML Doclet 3.1 User's Guide 10

http://www.yworks.com/products/yed

To use this default diagram locator, you need to specify the following two
commandline options:

-diagramlocatorpath <ydoc_install_dir>/lib/ydoc.jar
-diagramlocator ydoc.resolvers.DefaultDiagramLocator

To create and use your own diagram locators, all you have to do is implementing the
ydoc.resolvers.PathResolver interface and register the locator similar to the above
example. The mechanism to register locators works similar to the one used for
doclets.

PathResolver API
Documentation for the ydoc.resolvers.PathResolver interface, which comprises the
PathResolver API.

General Layout of UML class diagrams

Associations
structural relationships between a whole and its parts, i.e. has
a or instantiates

Every declared field constitutes an association.

Dependencies
semantic relationships in which a change to one thing may
effect the semantics of the other thing

There are several heuristics as to what constitues a dependency.
See Configuring yDoc.

11 yWorks UML Doclet 3.1 User's Guide

yWorks UML Doclet 3.1 User's Guide 11

PathResolver.html

Generalizations
specialization/generalization relationships, i.e. is a or
subclass/superclass

For interfaces there may be more than one generalization
relationship.

Realizations
semantic relationships between classifiers, i.e.
interface/implementing class

For interfaces there are no realization relationships.

Using filters

yDoc provides a sophisticated filter framework, which lets you exclude parts of your
API from documentation using customizable filter criteria.

The distribution comes with one predefined filter, which lets you exclude
classes/interfaces, fields, and/or methods from documentation, if their documentation
comment contains an @y.exclude tag.
To use this filter, you need to specify the following two commandline options:

-filterpath <ydoc_install_dir>/lib/ydoc.jar
-filter ydoc.filters.ExcludeFilter

To create and use your own filters, all you have to do is implement the
ydoc.filters.DocFilter interface and register the filter similar to the above example.
The mechanism to register filters works similar to the one used for doclets.

DocFilter API
Documentation for the ydoc.filters.DocFilter interface, which comprises the DocFilter
API.

Using the XML driven taglet factory

By specifying the -generic option, you can tell yDoc to register simple taglets, which
are more powerful than the ones created by the standard -tag option and are defined
in the resources/taglet_definitions.xml and
resources/taglet_templates.xml files.
By adding more definitions to those files, you can use/register more simple taglets.

The basic idea is to have template definitions that define taglet behaviour and taglet
definitions that define scope, name, and which template to use.

For examples on how to define taglets, see the two mentioned xml files.

Taglet Definitions
The following XML elements are used to define taglets:

• <taglet>

12 yWorks UML Doclet 3.1 User's Guide

yWorks UML Doclet 3.1 User's Guide 12

DocFilter.html

Each of these elements results in the registration of one particular taglet.
The value of the name attribute specifies the javadoc tag for the taglet. The value
of the attribute allowMultipleTags specifies if more than one appearance of
the javadoc tag per doc element is allowed. If not, all but the first tag will be
ignored.

• <usage>
Required element that specifies the taglet scope as per the taglet API.

• <headline>
Required root element for <singular> and <plural>.

• <singular>
Required element that specifies the headline for the tag comment if only one
javadoc tag or no <plural> element is present.

• <plural>
Optional element that specifies the headline for the tag comment if multiple
javadoc tags are allowed and present.

In general, it is a good idea to use at least one '.' character in the name of custom
tags to avoid potential conflicts/overrides.

Template Definitions
The following XML elements are used to define templates:

• <template>
Each of these elements results in the creation of one particular template.
The value of the name attribute has to be unique among all templates. It is used
to reference the template in the taglet definition.

• <headline>
Required element that specifies the HTML code for the headline of the tag
comment.
You may specify one parameter sign, i.e. #0.
You may use a single parameter multiple times, e.g. <headline>
<![CDATA[bla #0 bla#0bla]]> </headline>
The element should contain unparsed character data, i.e. <![CDATA[....]]>

• <content>
Required element that specifies the HTML formatting for the tag comment.
The value of the separator attribute specifies if and how to break down the
comment into parameters.
Possible values are:
- any single character breaks the comment at each occurrence

of the specified character
- the token "first-whitespace" breaks the comment at the first

occurrence of a whitespace
- the token "first-word-or-tag" breaks the comment at the first

occurrence of a whitespace that does
not belong to an inline tag

- the token "whitespace" breaks the comment at each occurrence
of a whitespace

- the token "none" (default) results in one token only, namely the
whole comment

• <content-item>
Required element that specifies the HTML code to wrap the tag comment in. If
multiple javadoc tag are present for a particular doc element, then one content

13 yWorks UML Doclet 3.1 User's Guide

yWorks UML Doclet 3.1 User's Guide 13

item is created for each tag comment.
You may specify up to ten parameter signs, i.e. #x, where -1 < x < 10.
You may use a single parameter multiple times.
The element should contain unparsed character data.

• <content-sep>
Optional element that defaults to "".
Its value will be inserted between content items.
The element should contain unparsed character data.

• <content-start>
Optional element that defaults to "".
Its value will be inserted directly after the headline, before the first content item.
The element should contain unparsed character data.

• <content-end>
Optional element that defaults to "".
Its value will be inserted directly after the the last content item.
The element should contain unparsed character data.

In general, it is a good idea to use the <DT> tag for headlines and the <DD> tag for
content, since all output generated by javadoc taglets appears in definition lists.

Custom command line options

yDoc provides several custom command line options:

• -diagramlocator class
Specifies the class file for the diagram locator to be used. Use the fully-qualified
name for class. Use the -diagramlocatorpath option to specify the path to the
diagram locator.

• -diagramlocatorpath -diagramlocatorpathlist
Specifies the search paths for finding diagram locator class files (*.class). The
diagramlocatorpathlist can contain multiple paths separated by the
system-dependant path-separator.

• -filter class
Specifies the class file for the filter to be applied. Use the fully-qualified name for
class. Use the -filterpath option to specify the path to the filter.

• -filterpath filterpathlist
Specifies the search paths for finding filter class files (*.class). The filterpathlist
can contain multiple paths separated by the system-dependant path-separator.

• -generic
The taglet definitions in resources/taglet_definitions.xml and
resources/taglet_templates.xml are used to create and register simple
taglets.

• -license file
Specifies the path to the license file.

• -resourcepath resourcepathlist
Specifies the search paths for finding resource files (i.e. taglet definition files,
ydoc configuration file, ydoc license file). The resourcepathlist can contain
multiple paths separated by the system-dependant path-separator.

• -umlautogen

14 yWorks UML Doclet 3.1 User's Guide

yWorks UML Doclet 3.1 User's Guide 14

Same as using -umltypegen, -umlpackagegen, and -umloverviewgen in
combination

• -umlfileformat formatname
Overrides the uml_file_format property in resources/ydoc.cfg
See the section about UML file formats for a list of supported formats.

• -umlgen
UML diagrams will be created and embedded for all documented files with an
@y.uml tag.
@y.uml may be used in type, package, and overview documentation.

• -umloverviewgen
An UML overview diagram will be created and embedded, even if there is no
@y.uml tag in overview.html.

• -umlpackagegen
UML diagrams will be created and embedded for all documented packages, not
only for those with an @y.uml tag.

• -umltypegen
UML diagrams will be created and embedded for all documented classes and
interfaces, not only for those with an @y.uml tag.

• -ytag
Allows to specify the position of custom yDoc tags (i.e. @y.uml or tags defined
via the taglet factory) in relation to standard tags.

15 yWorks UML Doclet 3.1 User's Guide

yWorks UML Doclet 3.1 User's Guide 15

6. Configuring yDoc

resources/ydoc.cfg

resources/ydoc.cfg is yDoc's main configuration file.
It uses a simple XML format consisting of nested group and property elements.

Following is the complete list of recognized group and property declarations.

Group diagrams
Encapsulates settings that determine all aspects of yDoc's UML
generating mechanism. These settings are grouped into the
categories overview, package, and type in correspondance to the
available diagram types.
You may have multiple diagram subgroups in each of the above
mentioned three categories. For each diagram group, one UML
diagram will be generated and embedded into the corresponding
HTML file.

Group diagrams.overview.diagram

• Property style accepts an arbitrary text value interpreted as a
file name.
This property specifies the path to a yDoc style definition file,
which determines the visual properties of the generated UML
diagram, such as line colors or font sizes.
See UML Styles for more information.

• Property type accepts one of the following values:

• dependency
Dependency diagrams depict package-level
dependencies in your project.

• inheritance
Inheritance diagrams depict project-wide inheritance
trees.

This property specifies the overview diagram type.
• Property id accepts an arbitrary text value.

This property specifies a diagram ID, which is used to
distinguish between multiple overview diagrams.
The value of this property has to be unique among all
diagrams.overview.diagram ID values.

Group diagrams.overview.diagram.include

• Property dependencies accepts one of the following values:

• all
All package dependencies are displayed.

• reduced

16 yWorks UML Doclet 3.1 User's Guide

yWorks UML Doclet 3.1 User's Guide 16

No transitive dependencies are displayed.

This property specifies whether transitive dependencies
should be displayed.
This property is only respected for overview diagrams of type
dependency.

• Property groups accepts values true and false.
This property specifies whether package nodes should be
grouped according to the -group options. If no -group option
is used, this property is ignored.

• Property packages accepts values true and false.
This property specifies whether type nodes should be
grouped according to their containing packages.
This property is only respected for overview diagrams of type
inheritance.

Group diagrams.overview.diagram.insets

• Property group accepts non-negative integer values.
This property specifies the distance from a group node's
border to the package nodes contained in the group node.

• Property package accepts non-negative integer values.
This property specifies the distance from a package node's
border to the type nodes contained in the package node.

Group diagrams.overview.diagram.layout

• Property BUS_ROUTING accepts values true and false.
This property specifies whether multiple relations (e.g. in the
case of a class having multiple subclasses) should be routed
in a bus style manner.

• Property CYCLE_LAYERING_POLICY accepts one of the
following values:

• DEFAULT_POLICY
All backwards relation edges as determined by a
depth-first-search on the diagram nodes are temporarily
removed for layering.

• ASSIGN_CYCLES_TO_SAME_LAYER_POLICY
Diagram nodes with cyclic dependencies are put into the
same layer.

• BREAK_CYCLES_BY_WEIGHT_POLICY
Cyclic dependencies are resolved by temporarily
removing the least significant relation edges for layering.

This property specifies the layering policy for cyclic
dependencies.

• Property GROUP_COMPACTION accepts values true and
false.
This property specifies whether package and group digram
nodes should be kept as small as possible.

• Property ORIENTATION accepts one of the following values:

17 yWorks UML Doclet 3.1 User's Guide

yWorks UML Doclet 3.1 User's Guide 17

• TOP_TO_BOTTOM
• LEFT_TO_RIGHT
• RIGHT_TO_LEFT
• BOTTOM_TO_TOP

This property specifies the layout orientation.
• Property RECURSIVE_GROUP_LAYERING accepts values

true and false.
This property specifies whether layering should be performed
locally on a per group basis or globally for the whole
diagram.
This property is ignored, if the diagram does not contain
node groups.

• Property REVERSE_EDGES accepts values true and false.
This property specifies whether the direction of relation
edges should be reversed during layout calculation.
Reversing the edge directions does e.g. affect the alignment
of the diagram nodes.

• Property ROUTE_ORTHOGONAL accepts values true and
false.
This property specifies whether relation edges should be
routed orthogonally or polyline-style.

Group diagrams.package.diagram

• Property style accepts an arbitrary text value interpreted as a
file name.
This property specifies the path to a yDoc style definition file,
which determines the visual properties of the generated UML
diagram, such as line colors or font sizes.
See UML Styles for more information.

Group diagrams.package.diagram.include

• Property packages accepts values true and false.
This property specifies whether type nodes should be
grouped according to their containing package.

Group diagrams.package.diagram.insets

• Property group accepts non-negative integer values.
This property specifies the distance from a group node's
border to the package nodes contained in the group node.

• Property package accepts non-negative integer values.
This property specifies the distance from a package node's
border to the type nodes contained in the package node.

Group diagrams.package.diagram.layout

• Property BUS_ROUTING accepts values true and false.
This property specifies whether multiple relations (e.g. in the

18 yWorks UML Doclet 3.1 User's Guide

yWorks UML Doclet 3.1 User's Guide 18

case of a class having multiple subclasses) should be routed
in a bus style manner.

• Property ORIENTATION accepts one of the following values:

• TOP_TO_BOTTOM
• LEFT_TO_RIGHT
• RIGHT_TO_LEFT
• BOTTOM_TO_TOP

This property specifies the layout orientation.
• Property REVERSE_EDGES accepts values true and false.

This property specifies whether the direction of relation
edges should be reversed during layout calculation.
Reversing the edge directions does e.g. affect the alignment
of the diagram nodes.

• Property ROUTE_ORTHOGONAL accepts values true and
false.
This property specifies whether relation edges should be
routed orthogonally or polyline-style.

Group diagrams.type.diagram

• Property style accepts an arbitrary text value interpreted as a
file name.
This property specifies the path to a yDoc style definition file,
which determines the visual properties of the generated UML
diagram, such as line colors or font sizes.
See UML Styles for more information.

Group diagrams.type.diagram.exclude.pattern

• Property associations accepts a pattern text value.
Type names matching the pattern text will not be displayed
among the diagram's association types.

• Property dependencies accepts a pattern text value.
Type names matching the pattern text will not be displayed
among the diagram's dependency types.

• Property generalizations accepts a pattern text value.
Type names matching the pattern text will not be displayed
among the diagram's generalization types.

• Property realizations accepts a pattern text value.
Type names matching the pattern text will not be displayed
among the diagram's realization types.

Pattern text values are a comma-separated list of full-qualified
typename patterns where the '?' character denotes a wildcard of
length one and the '*' character denotes a wildcard of arbitrary
length.

Group diagrams.type.diagram.include

• Property associations accepts values true and false.
This property specifies whether association nodes should be

19 yWorks UML Doclet 3.1 User's Guide

yWorks UML Doclet 3.1 User's Guide 19

displayed.
• Property dependencies accepts one of the following values:

• all
Any non-primitive type referenced in a type's byte code
is considered a dependency.

• none
No dependency information is calculated.

• parameters
Any non-primitive parameter types of constructor and
method signatures are considered dependencies.

• parameters-returntype
Any non-primitive parameter types of constructor and
method signatures as well as all non-primitive method
return types are considered dependencies.

This property specifies the heuristic approach as to what
constitutes a dependency. Note, that types which are
associations will not appear as dependencies no matter
which heuristic is chosen.

• Property packages accepts values true and false.
This property specifies whether type nodes should be
grouped according to their containing package.

• Property paramters accepts values true and false.
This property specifies whether parameter types should be
displayed in constructor and method signatures.

Group diagrams.type.diagram.insets

• Property package accepts non-negative integer values.
This property specifies the distance from a package node's
border to the type nodes contained in the package node.

Group diagrams.type.diagram.order

• Property fields accepts one of the ordering enumeration
values.
This property specifies the order of fields in type diagrams.

• Property constructors accepts one of the ordering
enumeration values.
This property specifies the order of constructors in type
diagrams.

• Property methods accepts one of the ordering enumeration
values.
This property specifies the order of methods in type
diagrams.

The following ordering enumeration values are available:

• lex
Members are sorted according to their qualified names (and
signatures in case of constructors and methods).

• lex-ic

20 yWorks UML Doclet 3.1 User's Guide

yWorks UML Doclet 3.1 User's Guide 20

Same as lex, but case insensitive.
• mod-lex

Members are sorted according to their modifiers. Modifiers
are considered to imply the following order:

static public < public < static protected < protected < static
package-private < package-private < static private < private
If two (or more) members are equal according to this
ordering, they are sorted according to their qualified names
(and signatures in case of constructors and methods).

• mod-lex-ic
Same as mod-lex, but case insensitive.

Group diagrams.type.diagram.layout

• Property PACKAGE_DISTANCE accepts values
non-negative decimal values.
This property specifies the distance between adjacent
package nodes.

• Property RELATION_BUS_ROUTING accepts values true
and false.
This property specifies whether multiple generalization or
realization edges should be routed in a bus-style manner.

• Property RELATION_DISTANCE accepts values
non-negative decimal values.
This property specifies the distance between the detailed
type node and related type nodes.

• Property RELATION_TYPE_ALIGNMENT accepts one of the
following values:

• LEFT
• CENTER
• RIGHT
• SHORTEST_DISTANCE

Association nodes will be right aligned, dependency
nodes left aligned.

• LONGEST_DISTANCE
Association nodes will be left aligned, dependency
nodes right aligned.

This property specifies specifies the alignment policy for
association and dependency type nodes. If package nodes
are displayed, alignment calculation is done on a per relation
package basis.

• Property RELATION_TYPE_DISTANCE accepts values
non-negative decimal values.
This property specifies the distance between adjacent
relation type nodes.

• Property RELATION_LABEL_LAYOUT_POLICY accepts
one of the following values:

• AS_IS
No new label position is calculated.

• OUTWARDS

21 yWorks UML Doclet 3.1 User's Guide

yWorks UML Doclet 3.1 User's Guide 21

For labels outside of a type node a new label position is
calculated. For labels belonging to generalization or
realization types, the new position is above the node, for
labels belonging to association types the new position is
to the left of the node, and for labels belonging to
dependency types, it is to the right of the node.

This property specifies the label layout policy for labels of
relation type nodes.

Group formats
Settings related to file formats of the generated UML diagrams
and the way they are embedded into the HTML API
documentation.

• Property fileformat accepts one of the following values:

• GIF
Well-known image format.

• JPG
Well-known image format.

• PNG
Well-known image format, the default.

• SVG
Scalable Vector Graphics, a XML-based vector graphics
format.

• SVGZ
Compressed SVG.

• SWF
Shockwave Flash, a popular binary vector graphics
format.

This property specifies the file format for the generated UML
diagrams.

Group formats.vectorgraphics.display

• Property scaling accepts one of the following values:

• FIXED_SIZE
The diagram will be displayed in a fixed size canvas
(specified by properties width and height).

• ACTUAL_SIZE
The diagram will be displayed in a canvas sized to the
diagram's actual size.
This mode ignores properties width and height.

• ACTUAL_SIZE_MAX_WIDTH
The diagram will be displayed in a canvas sized to the
diagram's actual size up to a fixed canvas width
specified by property width).
This mode ignores property height.

• ACTUAL_SIZE_MAX_HEIGHT
The diagram will be displayed in a canvas sized to the

22 yWorks UML Doclet 3.1 User's Guide

yWorks UML Doclet 3.1 User's Guide 22

diagram's actual size up to a fixed canvas height
(specified by property height).
This mode ignores property width.

• ACTUAL_SIZE_MAX_WIDTH_MAX_HEIGHT
The diagram will be displayed in a canvas sized to the
diagram's actual size up to a fixed canvas size (specified
by properties width and height).

• FIT_TO_SIZE
The diagram will be scaled to fit into a canvas with fixed
width and fixed height (specified by properties width and
height).

• FIT_TO_SIZE_BY_WIDTH
The diagram will be scaled to fit into a canvas with fixed
width (specified by property width).
This mode ignores property height

• FIT_TO_SIZE_BY_HEIGHT
The diagram will be scaled to fit into a canvas with fixed
height (specified by property height).
This mode ignores property width.

• SHRINK_TO_SIZE
The diagram will be scaled to fit into a canvas with fixed
width and fixed height (specified by properties width and
height), unless it already fits.

• SHRINK_TO_SIZE_BY_WIDTH
The diagram will be scaled to fit into a canvas with fixed
width (specified by property width), unless it already fits.
This mode ignores property height.

• SHRINK_TO_SIZE_BY_HEIGHT
The diagram will be scaled to fit into a canvas with fixed
height (specified by property height), unless it already
fits.
This mode ignores width.

This property specifies the display scaling policy for UML
diagrams. All policies will retain the diagram's original aspect
ratio.

• Property width accepts positive integer values.
This property specifies the canvas width for the generated
UML diagram.

• Property height accepts positive integer values.
This property specifies the canvas height for the generated
UML diagram.

• Property reserveMinimum accepts values true and false.
This property specifies whether yDoc should reserve a
canvas at least the size of width and height when embedding
UML diagrams into HTML API documentation.

Group formats.vectorgraphics.svg

• Property workaround accepts values true and false.
This property specifies whether yDoc should use alternative
HTML code for SVG embedding.

23 yWorks UML Doclet 3.1 User's Guide

yWorks UML Doclet 3.1 User's Guide 23

The alternative approach wraps <EMBED> tag(s) in
<IFRAME> tags instead of <OBJECT> tags.

Group formats.image

• Property quality accepts values ranging from 0.0 to 1.0.
This property specifies the compression quality for image
formats that support compression (e.g. PNG, JPG).
A compression quality setting of 0.0 is most generically
interpreted as high compression is important, while a setting
of 1.0 is most generically interpreted as high image quality is
important.

• Property antialiasing accepts values true and false.
This property specifies whether anti aliasing should be used
in UML diagram image files.

• Property progressive accepts values true and false.
This property specifies whether UML diagram image files
should be encoded in progressive mode for image formats
that support progressive encoding.
Progressive encoding will result in image streams containing
a series of scans of increasing quality.

Group formats.image.tiling

• Property enabled accepts values true and false.
This property specifies whether UML diagrams should be
written to multiple small image files instead of a single large
one, if the image's width or height exceeds the corresponding
maximum.

• Property width accepts non-negative integer values.
This property specifies the maximum width for UML diagram
image tiles.

• Property height accepts non-negative integer values.
This property specifies the maximum height for UML diagram
image tiles.

Group misc

• Property warnings accepts values true and false.
This property specifies whether yDoc should emit warnings
each time an explicit link (i.e. the result of @see or @link) to
a documentation member, which was not accepted by the
registered filters, is suppressed.

Group misc.gc

• Property frequency accepts non-negative integer values.
This property specifies the number of UML diagrams to be
generated between explicit calls to the Java garbage
collector. A value of 10, for example, would result in a call to
the garbage collector after every tenth diagram, whereas a

24 yWorks UML Doclet 3.1 User's Guide

yWorks UML Doclet 3.1 User's Guide 24

value of 1 will call garbage collection after each diagram.
A value of 0 will prevent yDoc from explicitly calling the Java
garbage collector.

UML Styles

A style set defines the visual features of UML diagrams and is specified in a XML file
which conforms to the yDoc style definition schema.
The yDoc distribution comes with several predefined style files, see
resources/styles.
You can customize colors (main, border, text), fonts, shapes, and lines by either
modifying an existing style file or creating a new one.
The yDoc 3.1 distribution includes StyleEd, a GUI-based style editor, that greatly
simplifies customization. The editor is written completely in Java and will run on any
Java 1.8 (or higher) runtime environment. All files needed to run StyleEd are
contained in the executable JAR file lib/styleed.jar, i.e. double-clicking the file
or invoking
java -jar <YID>/lib/styleed.jar
will start StyleEd.
Aside from style file editing, StyleEd also allows users to experiment with layout
settings for the various diagram types.

25 yWorks UML Doclet 3.1 User's Guide

yWorks UML Doclet 3.1 User's Guide 25

http://www.yworks.com/xml/schema/ydoc/1.0/ydocstyle.xsd

7. Limitations

• The yDoc Evaluation version will only document ten classes.
If one or more of those are excluded from documentation via the @y.exclude
tag, they still count against that limit.

• In UML class diagrams generated by the yDoc Evaluation version, the
associations list and the dependencies list will only display the ten above
mentioned classes.

26 yWorks UML Doclet 3.1 User's Guide

yWorks UML Doclet 3.1 User's Guide 26

8. Acknowledgments

This product includes software developed by the Apache Software Foundation
(http://www.apache.org/).
yDoc uses Batik to generate SVG files. Batik is distributed under the Apache
Software License, Version 2.0.

yDoc uses FreeHEP VectorGraphics to generate SWF files. The FreeHEP
VectorGraphics class library is distributed under the GNU Lesser General Public
License.

Apache Software License

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner

27 yWorks UML Doclet 3.1 User's Guide

yWorks UML Doclet 3.1 User's Guide 27

http://www.apache.org/
http://www.apache.org/licenses/

or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with

28 yWorks UML Doclet 3.1 User's Guide

yWorks UML Doclet 3.1 User's Guide 28

the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

29 yWorks UML Doclet 3.1 User's Guide

yWorks UML Doclet 3.1 User's Guide 29

http://www.apache.org/licenses/LICENSE-2.0

GNU Lesser General Public License

GNU LESSER GENERAL PUBLIC LICENSE
Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence
the version number 2.1.]

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some
specially designated software packages--typically libraries--of the
Free Software Foundation and other authors who decide to use it. You
can use it too, but we suggest you first think carefully about whether
this license or the ordinary General Public License is the better
strategy to use in any particular case, based on the explanations below.

When we speak of free software, we are referring to freedom of use,
not price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and charge
for this service if you wish); that you receive source code or can get
it if you want it; that you can change the software and use pieces of
it in new free programs; and that you are informed that you can do
these things.

To protect your rights, we need to make restrictions that forbid
distributors to deny you these rights or to ask you to surrender these
rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source
code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them
with the library after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.

We protect your rights with a two-step method: (1) we copyright the
library, and (2) we offer you this license, which gives you legal
permission to copy, distribute and/or modify the library.

To protect each distributor, we want to make it very clear that
there is no warranty for the free library. Also, if the library is
modified by someone else and passed on, the recipients should know
that what they have is not the original version, so that the original
author's reputation will not be affected by problems that might be
introduced by others.

Finally, software patents pose a constant threat to the existence of
any free program. We wish to make sure that a company cannot
effectively restrict the users of a free program by obtaining a
restrictive license from a patent holder. Therefore, we insist that
any patent license obtained for a version of the library must be
consistent with the full freedom of use specified in this license.

Most GNU software, including some libraries, is covered by the

30 yWorks UML Doclet 3.1 User's Guide

yWorks UML Doclet 3.1 User's Guide 30

ordinary GNU General Public License. This license, the GNU Lesser
General Public License, applies to certain designated libraries, and
is quite different from the ordinary General Public License. We use
this license for certain libraries in order to permit linking those
libraries into non-free programs.

When a program is linked with a library, whether statically or using
a shared library, the combination of the two is legally speaking a
combined work, a derivative of the original library. The ordinary
General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General
Public License permits more lax criteria for linking other code with
the library.

We call this license the "Lesser" General Public License because it
does Less to protect the user's freedom than the ordinary General
Public License. It also provides other free software developers Less
of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many
libraries. However, the Lesser license provides advantages in certain
special circumstances.

For example, on rare occasions, there may be a special need to
encourage the widest possible use of a certain library, so that it becomes
a de-facto standard. To achieve this, non-free programs must be
allowed to use the library. A more frequent case is that a free
library does the same job as widely used non-free libraries. In this
case, there is little to gain by limiting the free library to free
software only, so we use the Lesser General Public License.

In other cases, permission to use a particular library in non-free
programs enables a greater number of people to use a large body of
free software. For example, permission to use the GNU C Library in
non-free programs enables many more people to use the whole GNU
operating system, as well as its variant, the GNU/Linux operating
system.

Although the Lesser General Public License is Less protective of the
users' freedom, it does ensure that the user of a program that is
linked with the Library has the freedom and the wherewithal to run
that program using a modified version of the Library.

The precise terms and conditions for copying, distribution and
modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived from the library, whereas the latter must
be combined with the library in order to run.

GNU LESSER GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library or other
program which contains a notice placed by the copyright holder or
other authorized party saying it may be distributed under the terms of
this Lesser General Public License (also called "this License").
Each licensee is addressed as "you".

A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables.

The "Library", below, refers to any such software library or work
which has been distributed under these terms. A "work based on the
Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term "modification".)

"Source code" for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation
and installation of the library.

Activities other than copying, distribution and modification are not

31 yWorks UML Doclet 3.1 User's Guide

yWorks UML Doclet 3.1 User's Guide 31

covered by this License; they are outside its scope. The act of
running a program using the Library is not restricted, and output from
such a program is covered only if its contents constitute a work based
on the Library (independent of the use of the Library in a tool for
writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library's
complete source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the
Library.

You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for a
fee.

2. You may modify your copy or copies of the Library or any portion
of it, thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices
stating that you changed the files and the date of any change.

c) You must cause the whole of the work to be licensed at no
charge to all third parties under the terms of this License.

d) If a facility in the modified Library refers to a function or a
table of data to be supplied by an application program that uses
the facility, other than as an argument passed when the facility
is invoked, then you must make a good faith effort to ensure that,
in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of
its purpose remains meaningful.

(For example, a function in a library to compute square roots has
a purpose that is entirely well-defined independent of the
application. Therefore, Subsection 2d requires that any
application-supplied function or table used by this function must
be optional: if the application does not supply it, the square
root function must still compute square roots.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Library,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Library.

In addition, mere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in
these notices.

32 yWorks UML Doclet 3.1 User's Guide

yWorks UML Doclet 3.1 User's Guide 32

Once this change is made in a given copy, it is irreversible for
that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.

4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you accompany
it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange.

If distribution of object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the
source code from the same place satisfies the requirement to
distribute the source code, even though third parties are not
compelled to copy the source along with the object code.

5. A program that contains no derivative of any portion of the
Library, but is designed to work with the Library by being compiled or
linked with it, is called a "work that uses the Library". Such a
work, in isolation, is not a derivative work of the Library, and
therefore falls outside the scope of this License.

However, linking a "work that uses the Library" with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a "work that uses the
library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.

When a "work that uses the Library" uses material from a header file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the object
file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section 6.
Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also combine or
link a "work that uses the Library" with the Library to produce a
work containing portions of the Library, and distribute that work
under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse
engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by
this License. You must supply a copy of this License. If the work
during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one
of these things:

a) Accompany the work with the complete corresponding
machine-readable source code for the Library including whatever
changes were used in the work (which must be distributed under
Sections 1 and 2 above); and, if the work is an executable linked
with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the
user can modify the Library and then relink to produce a modified
executable containing the modified Library. (It is understood
that the user who changes the contents of definitions files in the

33 yWorks UML Doclet 3.1 User's Guide

yWorks UML Doclet 3.1 User's Guide 33

Library will not necessarily be able to recompile the application
to use the modified definitions.)

b) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (1) uses at run time a
copy of the library already present on the user's computer system,
rather than copying library functions into the executable, and (2)
will operate properly with a modified version of the library, if
the user installs one, as long as the modified version is
interface-compatible with the version that the work was made with.

c) Accompany the work with a written offer, valid for at
least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.

d) If distribution of the work is made by offering access to copy
from a designated place, offer equivalent access to copy the above
specified materials from the same place.

e) Verify that the user has already received a copy of these
materials or that you have already sent this user a copy.

For an executable, the required form of the "work that uses the
Library" must include any data and utility programs needed for
reproducing the executable from it. However, as a special exception,
the materials to be distributed need not include anything that is
normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.

It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not normally
accompany the operating system. Such a contradiction means you cannot
use both them and the Library together in an executable that you
distribute.

7. You may place library facilities that are a work based on the
Library side-by-side in a single library together with other library
facilities not covered by this License, and distribute such a combined
library, provided that the separate distribution of the work based on
the Library and of the other library facilities is otherwise
permitted, and provided that you do these two things:

a) Accompany the combined library with a copy of the same work
based on the Library, uncombined with any other library
facilities. This must be distributed under the terms of the
Sections above.

b) Give prominent notice with the combined library of the fact
that part of it is a work based on the Library, and explaining
where to find the accompanying uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your
rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the
original licensor to copy, distribute, link with or modify the Library
subject to these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.

34 yWorks UML Doclet 3.1 User's Guide

yWorks UML Doclet 3.1 User's Guide 34

You are not responsible for enforcing compliance by third parties with
this License.

11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent
license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply,
and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Library under this License may add
an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

13. The Free Software Foundation may publish revised and/or new
versions of the Lesser General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library
specifies a version number of this License which applies to it and
"any later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by
the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible with these,
write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of promoting the sharing
and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

35 yWorks UML Doclet 3.1 User's Guide

yWorks UML Doclet 3.1 User's Guide 35

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest
possible use to the public, we recommend making it free software that
everyone can redistribute and change. You can do so by permitting
redistribution under these terms (or, alternatively, under the terms of the
ordinary General Public License).

To apply these terms, attach the following notices to the library. It is
safest to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least the
"copyright" line and a pointer to where the full notice is found.

<one line to give the library's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the library, if
necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the
library `Frob' (a library for tweaking knobs) written by James Random Hacker.

<signature of Ty Coon>, 1 April 1990
Ty Coon, President of Vice

That's all there is to it!

Copyright  2002-2018 yWorks GmbH. All Rights Reserved.
Send comments and questions to ydoc@yWorks.com

36 yWorks UML Doclet 3.1 User's Guide

yWorks UML Doclet 3.1 User's Guide 36

